Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Añadir filtros

Base de datos
Tipo del documento
Intervalo de año
1.
J Trace Elem Med Biol ; 75: 127099, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: covidwho-2323304

RESUMEN

The antioxidant effects of selenium as a component of selenoproteins has been thought to modulate host immunity and viral pathogenesis. Accordingly, the association of low dietary selenium status with inflammatory and immunodeficiency has been reported in the literature; however, the causal role of selenium deficiency in chronic inflammatory diseases and viral infection is still undefined. The COVID-19, characterized by acute respiratory syndrome and caused by the novel coronavirus 2, SARS-CoV-2, has infected millions of individuals worldwide since late 2019. The severity and mortality from COVID-19 have been associated with several factor, including age, sex and selenium deficiency. However, available data on selenium status and COVID-19 are limited, and a possible causative role for selenium deficiency in COVID-19 severity has yet to be fully addressed. In this context, we review the relationship between selenium, selenoproteins, COVID-19, immune and inflammatory responses, viral infection, and aging. Regardless of the role of selenium in immune and inflammatory responses, we emphasize that selenium supplementation should be indicated after a selenium deficiency be detected, particularly, in view of the critical role played by selenoproteins in human health. In addition, the levels of selenium should be monitored after the start of supplementation and discontinued as soon as normal levels are reached. Periodic assessment of selenium levels after supplementation is a critical issue to avoid over production of toxic metabolites of selenide because under normal conditions, selenoproteins attain saturated expression levels that limits their potential deleterious metabolic effects.


Asunto(s)
COVID-19 , Selenio , Humanos , SARS-CoV-2
2.
Cell Biochem Funct ; 41(3): 284-295, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: covidwho-2275936

RESUMEN

In the last 2 years, different pharmacological agents have been indicated as potential inhibitors of SARS-CoV-2 in vitro. Specifically, drugs termed as functional inhibitors of acid sphingomyelinase (FIASMAs) have proved to inhibit the SARS-CoV-2 replication using different types of cells. Those therapeutic agents share several chemical structure characteristics and some well-known representatives are fluoxetine, escitalopram, fluvoxamine, and others. Most of the FIASMAs are primarily used as effective therapeutic agents to treat different pathologies, therefore, they are natural drug candidates for repositioning strategy. In this review, we summarize the two main proposed mechanisms mediating acid sphingomyelinase (ASM) inhibition and how they can explain the inhibition of SARS-CoV-2 replication by FIASMAs. The first mechanism implies a disruption in the lysosomal pH fall as the endosome-lysosome moves toward the interior of the cell. In fact, changes in cholesterol levels in endosome-lysosome membranes, which are associated with ASM inhibition is thought to be mediated by lysosomal proton pump (ATP-ase) inactivation. The second mechanism involves the formation of an extracellular ceramide-rich domain, which is blocked by FIASMAs. The ceramide-rich domains are believed to facilitate the SARS-CoV-2 entrance into the host cells.


Asunto(s)
COVID-19 , SARS-CoV-2 , Esfingomielina Fosfodiesterasa , Humanos , Ceramidas/metabolismo , Fluoxetina/farmacología , SARS-CoV-2/efectos de los fármacos , Esfingomielina Fosfodiesterasa/antagonistas & inhibidores , Esfingomielina Fosfodiesterasa/metabolismo
3.
J Biomol Struct Dyn ; : 1-14, 2022 Nov 29.
Artículo en Inglés | MEDLINE | ID: covidwho-2134146

RESUMEN

Acid Sphingomyelinase (ASM) is a human phosphodiesterase that catalyzes the metabolism of sphingomyelin (SM) to ceramide and phosphocholine. ASM is involved in the plasma membrane cell repair and is associated with the lysosomal inner lipid membrane by nonbonding interactions. The disruption of those interaction would result in ASM release into the lysosomal lumen and consequent degradation of its structure. Furthermore, SARS-CoV-2 infection has been linked with ASM activation and with a ceramide domain formation in the outer leaflet of the plasma membrane that is thought to be crucial for the viral particles recognition by the host cells. In this study, we have explored in silico the behavior of fluoxetine and related drugs as potential inhibitors of ASM. Theoretically, these drugs would be able to overpass lysosomal membrane and reach the interactions that sustain ASM structure, breaking them and inhibiting the ASM. The analyses of docking data indicated that fluoxetine allocated mainly in the N-terminal saposin domain via nonbonding interactions, mostly of hydrophobic nature. Similar results were obtained for venlafaxine, citalopram, atomoxetine, nisoxetine and fluoxetine's main metabolite norfluoxetine. In conclusion, it was observed that the saposin allocation may be a good indicative of the drugs inhibition mechanism, once this domain is responsible for the binding of ASM to lysosomal membrane and some of those drugs have previously been reported to inhibit the phosphodiesterase by releasing its structure in the lysosomal lumen. Our MD data also provides some insight about natural ligand C18 sphingomyelin conformations on saposin.Communicated by Ramaswamy H. Sarma.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA